MITCSAIL的TextFooler生成对抗性文本以增强自然语言模型 . MIT CSAIL's TextFooler generates adversarial text to strengthen natural language models . 在2019年8月,英伟达推出了Megatron自然语言模型 。 In August 2019, Nvidia introduced the Megatron natural language model . 年8月,英伟达推出了Megatron自然语言模型 。 In August 2019, Nvidia introduced the Megatron natural language model . In August 2019, Nvidia introduced the Megatron natural language model . 在2019年8月,NVIDIA推出了Megatron自然语言模型 。 In August 2019, Nvidia presented the Megatron natural language model . Combinations with other parts of speech
Usage with adjectives
More
Surprisingly, this is the case for both acoustic modeling and language modeling . Was the year of language models , right? What is the Language Model ? What is a Language Model ? The language model provides context to distinguish between words and phrases that sound similar.Optimization of language models . 继续阅读使用TensorFlow和Keras构建一个生成文本的语言模型 . Continue reading Use TensorFlow and Keras to build a language model for text generation. One of the ASR system modules that exemplifies these challenges is the language model . Above we talked about prototype language . 该项目还强调了训练此类语言模型 所涉及的巨大碳足迹。 (The project also underlined the hefty carbon footprint involved in training such language models .). 同时,语言模型 通过衡量目标语言中每个被预测单词的常见性,对预测进一步精确细化。 Meanwhile, a language model further refines the prediction by weighing how common every predicted word is in the target language. . 我们还将研究整合个人语言模型 ,旨在更准确地在系统中模仿个人的写作风格。 We are also working on incorporating personal language models , designed to more accurately emulate an individual's style of writing into our system. 第三个和最后一个模型-也称为语言模型 -然后添加单词的上下文以理解整个对话。 The third and the final model- also called the Language model - then adds context of the words to make sense of the entire conversation. 生成式人工智能语言模型 ,如OpenAI的GPT-2,可以生成令人印象深刻的语义连贯的文本,但是控制文…. Generative AI language models like OpenAI's GPT-2 produce impressively coherent and grammatical text, but controlling the attributes of this text- such as the…. 添加语言模型 嵌入可以在许多不同的任务中提供比较先进的技术更大的改进,如下面的图13所示。 Adding language model embeddings gives a large improvement over the state-of-the-art across many different tasks as can be seen in Figure 13 below. 在信息检索环境中,通常会对单语法语言模型 进行平滑处理,以避免出现P(term)=0的情况。 In information retrieval contexts, unigram language models are often smoothed to avoid instances where P(term)= 0. 使用多个前向和后向运行的RNNLMs,语言模型 可以rescoring,此外,一个基于词后的系统的融入,能提供20%的提升。 Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. 与其他训练数据一样,语言模型 基于大量真实的人类言语,并转录成文本。 Like other training data, the language models are based on large amounts of real human speech, transcribed into text. 以有价值的方式训练这些语言模型 需要大量的计算能力和电力。 Training these language models in a valuable way requires a monster amount of computing power and electricity. 他们的方法称为通用语言模型 微调(ULMFiT),其性能优于最先进的结果,误差降低了18-24%。 Their method, called Universal Language Model Fine-Tuning(ULMFiT) outperforms state-of-the-art results, reducing the error by 18-24%. 虽然令人印象深刻的结果是超越现有语言模型 所取得的显着飞跃,但所涉及的技术并不是全新的。 While the impressive results are a remarkable leap beyond what existing language models have achieved, the technique involved isn't exactly new. 如果某个语言模型 在TensorFlow中已存在,则从模型到概念证明只需要几天时间,而不是几周时间;. If a language model already exists in TensorFlow, then going from model to proof of concept can take days rather than weeks; 我们运行语言模型 300次迭代,批量大小为32,并计算每秒处理的样本数。 We ran the language model for 300 iterations with a batch size of 32 and computed the number of samples processed per second. Alone, language models can be used for text or speech generation; for example:.
Display more examples
Results: 29 ,
Time: 0.0196