datamodel elementer
data model element datamodellen elementer
data model element på data-model elementer
data modelelement
data model elementer
Next, understand the data model elements.
Næste, forstår datamodellen elementer.Data model elements that allow the SCO to initiate sequencing requests.
Datamodel elementer, der tillader SCO at indlede sekventering anmodninger.The data is always stored in one of the defined SCORM data model elements.
Dataene er altid gemt i en af de definerede SCORM datamodel elementer.Each of these data model elements holds a different piece of data..
Hver af disse datamodel elementer har en anden brik af data.The data that is always retrieved is one of the defined SCORM data model elements.
De data, der altid er hentet, er en af de definerede SCORM datamodel elementer.Interactions- Use the interactions data model elements to report the results of each question response.
Interaktioner- Brug samspillet datamodel elementer til rapportere om resultaterne af hvert spørgsmål svar.SCORM 2004, though, separates the concepts of passing andcompleting using two distinct data model elements.
SCORM 2004, selv, adskiller begreberne forbi ogudfylde ved hjælp af to adskilte datamodel elementer.Second, I think there are too many data model elements, I think there should be a consultation for how much is required.
Anden, Jeg tror, der er for mange datamodel elementer, Jeg tror, der bør være en høring for, hvor meget der kræves.The CMIElement data type is a string corresponding to the SCORM data model elements described below.
De CMIElement datatype er en streng, der svarer til SCORM datamodellen elementer beskrevet nedenfor.The following“1st tier” data model elements are the most important and most commonly used SCORM 1.2 equivalent in parentheses.
Følgende“1st tier” datamodel elementer er de vigtigste og mest almindeligt anvendte SCORM 1.2 tilsvarende i parentes.No, you don't… you have no way of knowing for certain which data model elements are important to this piece of content.
Du behøver ikke… du har ingen mulighed for at vide for visse hvilke datamodel elementer er vigtige for denne stykke indhold.This example builds on the Basic Run-Time Calls example to show more in-depth use of the SCORM run-time data model elements.
Dette eksempel bygger på den grundlæggende Run-Time opfordrer eksempel for at vise mere i dybden brugen af SCORM run-time data modelelement.Some of the data model elements have values initialized by the LMS which speak to the circumstances under which the SCO is being launched.
Nogle af datamodellen elementer er værdier, initialiseres af LMS, der taler til de omstændigheder, hvorunder SCO er ved at blive lanceret.This example builds on the Simple Single SCO to demonstrate the proper use of the basic SCORM run-time data model elements.
Dette eksempel bygger på den enkle Single SCO til at demonstrere den korrekte anvendelse af de grundlæggende SCORM run-time data modelelement.Each of these data model elements has a separate value for each SCO within a course, data model elements are not shared across SCOs.
Hver af disse datamodel elementer har en separat værdi for hver SCO i et kursus, datamodel elementer er ikke delt på tværs SCOs.Objectives- In large SCOs,consider reporting on the learner's mastery of specific learning objectives using the objectives data model elements.
Målsætninger- I store SCOs,overveje at rapportere om den lærendes beherskelse af specifikke læringsmål ved hjælp af mål datamodel elementer.Credit(cmi. core. credit) data model elements provide the SCO with some context it can use to provide the learner with the optimal experience.
Credit(cmi. core. credit) datamodel elementer give SCO med nogle sammenhæng kan bruge til at give den lærende med den optimale oplevelse.Sequencing operates on a“tracking model” that closely parallels a subset of the data model elements exchanged between the content and the LMS at run-time.
Sequencing opererer på en“sporing model”, der nøje paralleller en delmængde af datamodellen elementer, der udveksles mellem indhold og LMS på run-time.The SetValue method allows the SCO to persist data to the LMS. The data is always stored in one of the defined SCORM data model elements.
Den AngivVærdi Metoden gør det muligt for SCO til at fortsætte data til LMS. Dataene er altid gemt i en af de definerede SCORM datamodel elementer.The data model elements are slightly different across SCORM versions, but for the most part there is a corresponding element in each version of the standards.
Datamodellen elementer er lidt forskellige på tværs af SCORM-versioner, men for det meste er der et tilsvarende element i hver version af standarderne.Using the SCORM run-time is largely optional from a strict conformance perspective,however the industry norm is to use at least a subset of the run-time data model elements available to you.
Brug af SCORM run-time er i vid udstrækning frivillig fraen streng overensstemmelse perspektiv, men branchen normen er at bruge mindst en delmængde af run-time data model elementer til rådighed for dig.Each of these data model elements has a separate value for each SCO within a course, data model elements are not shared across SCOs. Furthermore, each“attempt” on a SCO has it's own set of run-time data..
Hver af disse datamodel elementer har en separat værdi for hver SCO i et kursus, datamodel elementer er ikke delt på tværs SCOs. Endvidere, hver“Forsøg” på en SCO har sit eget sæt af køre-time data.The cmi. entry(cmi. core. entry), cmi. mode(cmi. core. lesson_mode) and cmi. credit(cmi. core.credit) data model elements provide the SCO with some context it can use to provide the learner with the optimal experience.
Den cmi. entry(cmi. core. entry), cmi. mode(cmi. core. lesson_mode) og cmi. credit(cmi. core.credit) datamodel elementer give SCO med nogle sammenhæng kan bruge til at give den lærende med den optimale oplevelse.Industry norm expects all of the 1st tier data models elements to be used correctly in a SCO. Once that functionality has been enabled,the next most common data model elements, or 2nd tier, include.
Industri normen forventer, at alle i 1. tier datamodeller elementer, der skal anvendes korrekt i en SCO. Så snart, at funktionaliteten er aktiveret,den næste mest almindelige datamodel elementer, eller 2. tier, omfatter.Some example data model elements include the status of the SCO(completed, passed, failed, etc), the score the learner achieved, a bookmark to track the learner's location, and the total amount of time the learner spent in the SCO.
Nogle eksempler på data-model elementer omfatter status for SCO(afsluttet, passerede, mislykkedes, osv.), scoren den lærende opnåede, et bogmærke til at spore den lærendes placering, og den samlede mængde af tid, den lærende tilbragt i SCO.SCORM needs to be complicated to fulfill real needs, but its too complicated- it should be easier to understand, first of all. Second,I think there are too many data model elements, I think there should be a consultation for how much is required.
SCORM behov for at være kompliceret at opfylde reelle behov, men det er for kompliceret- Det skal være lettere at forstå, først og fremmest. Anden, Jeg tror,der er for mange datamodel elementer, Jeg tror, der bør være en høring for, hvor meget der kræves.The SCORM defines a data model consisting of data model elements which the content can read from and write to, facilitating this kind of functionality see Section 3.4 of the SCORM Run-Time Environment document for a full list of data model elements.
Den SCORM definerer en datamodel, der består af datamodel elementer, hvor indholdet kan læse fra og skrive til, lette denne form for funktionalitet se afsnit 3.4 af SCORM Run-Time Environment dokument for en komplet liste over datamodel elementer.A set of defined data points that the content andLMS can exchange via the SCORM API. Example data model elements include“cmi. score. scaled”(to record a user's test score) and“cmi. completion_status” to record when/if the learner has completed some training.
Et sæt af definerede datapunkter, at indholdet ogLMS kan udveksle via SCORM API. Eksempel datamodel elementer omfatter“cmi. score. scaled”(at registrere en brugers test score) og“cmi. completion_status” at optage, når/ hvis den lærende har gennemført nogle uddannelse.Some data model elements are constrained to having values in a limited vocabulary(for instance, status might be“completed” or“passed”), others are constrained to being a specific data type(for instance, score must always be a number) while others allow the SCO to persist free text data with no semantic meaning.
Nogle data model elementer er tvunget til at have værdier i et begrænset ordforråd(for eksempel, status kan være“afsluttet” eller“passerede”), andre er tvunget til at blive en bestemt datatype(for eksempel, score skal altid være en række) mens andre tillader SCO til at fortsætte fritekst data uden nogen semantisk mening.The CMI data model provides a list of data elements(a vocabulary) that can be written to andread from the LMS. Some example data model elements include the status of the SCO(completed, passed, failed, etc), the score the learner achieved, a bookmark to track the learner's location, and the total amount of time the learner spent in the SCO.
De CMI Datamodellen indeholder en liste over dataelementer(et ordforråd) der kan skrives til oglæses fra LMS. Nogle eksempler på data-model elementer omfatter status for SCO(afsluttet, passerede, mislykkedes, osv.), scoren den lærende opnåede, et bogmærke til at spore den lærendes placering, og den samlede mængde af tid, den lærende tilbragt i SCO.
Results: 30,
Time: 0.0606
In the Data Model tab, bind each of the data model elements to a business object element.
The parsed data is added to the AST nodes and the data model elements it is meant for.
That's as far as the DBA was willing to go: repeat the data model elements that involved people.
What is the relation between the data model elements and the terms in wfdesc, wfprov and other RO ontologies?
Minimally, each organization will need to add specific data model elements and corresponding RPD enhancements along with individual presentation elements.
In addition, this article focuses on evaluating the quality of the generated conceptual data model elements using Bunge-Wand-Weber and OntoClean ontologies.
By clicking on the SCORM data button, you can see all of the SCORM data model elements stored for a particular attempt.
RTE Data Model Elements • cmi.core.student_id (read-only) : Returns a unique alpha-numeric code or identifier that refers to this user of the LMS.