What is the translation of " TRIANGLE " in Latin?
S

['traiæŋgl]
['traiæŋgl]
triangulus
triangle
trianguli angulorum
triangulorum

Examples of using Triangle in English and their translations into Latin

{-}
  • Ecclesiastic category close
  • Computer category close
More triangle than triage.
Plus quam triginta.
And there is the triangle.
Et est haec tripartita.
Integer triangle Spiral of Theodorus.
Triangulus integer Spiralis Theodori.
I even have a T and triangle.
Habeo retem et tridentem.
Triangles on triangles on triangles.
Triangulus in tres triangulos divisus.
There are no isosceles Pythagorean triangles.
Ante in Europa Petrus Apianus triangulum proposuerat.
It is roughly shaped like a triangle and has a coastline of about 2,800 km.
Terra forma trianguli inversi est similis, et civitati 2800 chiliometrorum litoris sunt.
If you unfold the fortune teller, you have got a triangle pattern.
Et si tu creasti tua rogationum habeo tribus argumentis.
Triangle 30-60-90 triangle 45-45-90 triangle- with interactive animations.
Triangulus 30-60-90 triangulus 45-45-90 triangulus- cum animationibus interactivis.
It physically manifests itself as three golden triangles in which each embodies one of the goddesses' virtues: Power, Courage, and Wisdom.
Tria triangula aurea consistit quae quaeque una virtutium a deis habet, enim valetudo, audacia et sapientia.
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides.
Trianguli secundum triplices Pythagoreanos sunt Heroniani, quod et aream integram et latera integra haberent.
Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.
Quia angulus internus trianguli aequilateri est 60 gradus, sex triangula aequilatera in uno puncto coniuncta 360 gradus occupant.
Of all right triangles, the 45°-45°-90° degree triangle has the greatest ratio of the altitude from the hypotenuse to the sum of the legs, namely√2/4.[1]: p.282.
Omnibus etiam ex triangulis rectis, eiusdem trianguli maxima est proportio altitudinis ex hypotenusa, summae cathetorum, enim √2/4.[1]: p.282.
There are several Pythagorean triples which are well-known, including those with sides in the ratios: The 3: 4: 5 triangles are the only right triangles with edges in arithmetic progression.
In nonnullis notis triplicibus Pythagoreanis sunt proportionibus lateralibus 3: 4: 5 unus est triangulus rectus cuius latera sunt progressione arithmetica.
The 3-4-5 triangle is the unique right triangle(up to scaling) whose sides are in an arithmetic progression.9.
Triangulus lateribus 3-4-5 unicus est ex triangulis rectis(praeter triangulos proportionis) quorum latera sunt progressione arithmetica.9.
It is known that right angles were laid out accurately in Ancient Egypt; that their surveyors did use ropes for measurement; that Plutarch recorded in Isis and Osiris(around 100 AD) that the Egyptiansadmired the 3: 4: 5 triangle; and that the Berlin Papyrus 6619 from the Middle Kingdom of Egypt(before 1700 BC) stated that"the area of a square of 100 is equal to that of two smaller squares.
Cognitum est angulos rectos ad unguem constructos esse in Aegypto antiqua; funibus ad dimensionem constructores usos; Plutarchum in Moralia(around 100 AD)Aegyptios admiratos esse triangulum 3: 4: 5 descripsisse; Papyrum Berolinensim 6619 ex Regno Medio Aegypti(ante 1700 a.C.n.) dixisse"aream quadrati centum aequat duorum parviorum quadratorum.
Of all right triangles, the 45°-45°-90° degree triangle has the smallest ratio of the hypotenuse to the sum of the legs, namely√2/2.[1]: p.282,p.358.
Omnibus ex triangulis rectis, 45°-45°-90° graduum trianguli minima est proportio hypotenusa summae cathetorum, enim √2/2.[1]: p.282,p.358.
Such almost-isosceles right-angled triangles can be obtained recursively, a0 1, b0 2 an 2bn-1+ an-1 bn 2an+ bn-1 an is length of hypotenuse, n 1, 2, 3.
Tales trianguli paene isosceles colligantur per recursionem: a0 1, b0 2 an 2bn-1+ an-1 bn 2an+ bn-1 an est longitudo hypotenusae. n 1, 2, 3.
Triangles are the only right triangles with edges in arithmetic progression. Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides.
Unus est triangulus rectus cuius latera sunt progressione arithmetica. Trianguli secundum triplices Pythagoreanos sunt Heroniani, quod et aream integram et latera integra haberent.
Special angle-based triangles inscribed in a unit circle are handy for visualizing and remembering trigonometric functions of multiples of 30 and 45 degrees.
Angulariter praecipuus triangulus recti in circulo unitatis inscripti facile facit videre et recordari functiones trigonometricas multiplicatorum numerorum graduum 30º vel 45º.
Triangles with these angles are the only possible right triangles that are also isosceles triangles in Euclidean geometry. However, in spherical geometry and hyperbolic geometry, there are infinitely many different shapes of right isosceles triangles.
Horum angulorum unus triangulus rectus potest etiam esse isosceles in geometria Euclideana, sed spherica et hyperbolica in geometria, infinite multae sunt formae triangulorum rectorum isoscelium.
Now, if unity were aligned with triangle, it would follow that the circle, which is naturally prior to the triangle, would be outside the genus of figures, supposing triangle to be the first of shapes.
Si autem acciperetur unitas secundum triangulum, sequeretur quod circulus, qui est naturaliter prior triangulo, esset extra genus figurae, si triangulus esset prima figurarum.
The 45°-45°-90° triangle, the 30°-60°-90° triangle, and the equilateral/equiangular(60°-60°-60°) triangle are the three Möbius triangles in the plane, meaning that they tessellate the plane via reflections in their sides; see Triangle group.
Trianguli angulorum 45°-45°-90°, 30°-60°-90°, et aequilateralis triangulus(60°-60°-60°) sunt tres Möbiani in plano, quod tessellent planum reflectis lateribus; vide gregem triangulorum.
Position of some special triangles in an Euler diagram of types of triangles, using the definition that isosceles triangles have at least two equal sides, i.e. equilateral triangles are isosceles.
Positio triangulorum specialium in diagrammate Euleri de generibus triangularibus, secundum definitionem ut trianguli isosceles duo minimo latera aequalia haberent, itaque aequilaterales sunt isosceles.
Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30°-60°-90° triangle with hypotenuse of length 2, and base BD of length 1.
Scribatur triangulus aequilateralis ABC longitudine laterali 2 et puncto D medio segmenti BC. Scribatur altitudo ab A ad D. Tum ABD est 30°-60°-90° triangulus, hypotenusa longitudinis 2, et basi BD longitudinis 1.
Angle-based" special right triangles are specified by the relationships of the angles of which the triangle is composed. The angles of these triangles are such that the larger(right) angle, which is 90 degrees or π/2 radians, is equal to the sum of the other two angles.
Angulariter praecipuus" triangulus rectus definiatur secundum comparationes angulorum eius. Qui anguli sunt eiusmodi ut maximus(rectus) angulus, nonaginta graduum sive π/2 radiantium dimensus, aequat summa aliorum duorum angulorum.
Special triangles are used to aid in calculating common trigonometric functions, as below: The 45°-45°-90° triangle, the 30°-60°-90° triangle, and the equilateral/equiangular(60°-60°-60°) triangle are the three Möbius triangles in the plane, meaning that they tessellate the plane via reflections in their sides; see Triangle group.
Praecipui trianguli auxilio sunt in trigonometricis functionibus usitatis computandis, videlicet: Trianguli angulorum 45°-45°-90°, 30°-60°-90°, et aequilateralis triangulus(60°-60°-60°) sunt tres Möbiani in plano, quod tessellent planum reflectis lateribus; vide gregem triangulorum.
Isosceles right-angled triangles cannot have sides with integer values, because the ratio of the hypotenuse to either other side is√2, but√2 cannot be expressed as a ratio of two integers. However, infinitely many almost-isosceles right triangles do exist. These are right-angled triangles with integral sides for which the lengths of the non-hypotenuse edges differ by one.[5][6] Such almost-isosceles right-angled triangles can be obtained recursively.
Cum trianguli recti isoscelis latera omnia integra non possunt, quia proportio hypotenusae alii lateri est √2, sed √2 quod irrationalis est, non est proportio ullorum duorum integrorum, tamen infinite multi sunt trianguli recti paene isosceles: quorum triangulorum rectorum latera sunt integra, quibus in triangulis, longitudines cathetorum differunt uno.[5][6] Tales trianguli paene isosceles colligantur per recursionem.
Results: 28, Time: 0.0338
S

Synonyms for Triangle

trigon trilateral

Top dictionary queries

English - Latin