Examples of using Deterministic turing in English and their translations into Portuguese
{-}
-
Colloquial
-
Official
-
Medicine
-
Financial
-
Ecclesiastic
-
Ecclesiastic
-
Computer
-
Official/political
Alternatively, PP can be defined using only deterministic Turing machines.
For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n.
Alternatively, BPP can be defined using only deterministic Turing machines.
Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that L is contained in NL.
This means that I can be decided by a polynomial space deterministic Turing machine DTM.
RL contains L,the problems solvable by deterministic Turing machines in log space, since its definition is just more general.
The class LINSPACE(or DSPACE(O(n))) is defined the same, except using a deterministic Turing machine.
A probabilistic Turing machine is a deterministic Turing machine with an extra supply of random bits.
NL is a generalization of L, the class for logspace problems on a deterministic Turing machine.
Or can deterministic Turing machines efficiently simulate all probabilistic Turing machines with at most a polynomial slowdown?
In computability theory,one of the basic undecidable problems is that of deciding whether a deterministic Turing machine(DTM) halts.
Generalizations==Using a model other than a deterministic Turing machine, there are various generalizations and restrictions of DTIME.
In computability theory, one of the basic undecidableproblems is the halting problem: deciding whether a deterministic Turing machine(DTM) halts.
Another common reformulation is simply a deterministic Turing machine with an added tape full of random bits called the"random tape.
In computational complexity theory,a log-space reduction is a reduction computable by a deterministic Turing machine using logarithmic space.
In particular, a multitape deterministic Turing machine can never provide more than a quadratic time speedup over a singletape machine.
In computational complexity theory, DTIME(or TIME)is the computational resource of computation time for a deterministic Turing machine.
Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
A deterministic Turing machine is the most basic Turing machine, which uses a fixed set of rules to determine its future actions.
This is one way to seethat PSPACE formula_2 EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine.
In particular, a multitape deterministic Turing machine can never provide more than a quadratic time speedup over a singletape machine Papadimitriou 1994.
More precisely, the hypothesis is that there is some absolute constant c>0 such that 3SAT cannot be decided in time 2cn by any deterministic Turing machine.
Since deterministic Turing machines are special non-deterministic Turing machines, it is easily observed that each problem in P is also member of the class NP.
Examples of particular abstract machines which are deterministic include the deterministic Turing machine and deterministic finite automaton.
A non-deterministic Turing machine is a deterministic Turing machine with an added feature of non-determinism, which allows a Turing machine to have multiple possible future actions from a given state.
This is one way tosee that EXPSPACE⊆ 2-EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine.
That is, any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the problem of determining whether a Boolean formula is satisfiable.
DLOGTIME is the complexity class of all computational problems solvable in a logarithmic amount of computation time on a deterministic Turing machine.
Because of Savitch's theorem, NPSPACE is equivalent to PSPACE,essentially because a deterministic Turing machine can simulate a nondeterministic Turing machine without needing much more space even though it may use much more time.
Thus, a typical complexity class has a definition like the following::The set of decision problems solvable by a deterministic Turing machine within time"f""n.