boolesk algebra
boolean algebra
boolsk algebra
And John von Neumann took Boolean algebra and created the digital computer.
Og John von Neumann tog boolsk algebra og skabte den digitale computer.The analysis software of the flow cytometer(e.g., BD CELLQuest)allows for the use of Boolean algebra.
Analysen software af flowcytometer(f. eks BD CELLQuest)tillader anvendelse af boolsk algebra.Boolean algebra has wide applications in telephone switching and the design of modern computers.
Boolesk algebra har vide anvendelsesmuligheder på telefon opkobling og projektering af moderne computere.In recognition of his distinguished contributions to combinatory topology, Boolean algebras and mathematical logic.
I anerkendelse af hans fremtrædende bidrag til combinatory topologi, Boolean algebraer og matematisk logik.Boolean algebra is a logic based analysis method that allows for multiple operations in a single definition.
Boolsk algebra er en logik baseret analysemetode, der giver mulighed for flere operationer i en enkelt definition.Algebraic languages are common in computing: Boolean algebra for logic gates; and Relational algebra for database DML.
Algebraiske sprog er almindelige i computing: Boolean algebra for logiske gates; og relationelle algebra til database DML.Boolean algebras andtheir applications to topology and Subsumption of Boolean algebras under the theory of rings.
Boolean algebraer ogderes ansøgninger til topologi og subsumption af Boolesk algebraer under teorien om ringene.In 1953 showed that the variety generated by a primal algebra has the same essential structure as the variety of Boolean algebras.
I 1953 viste, at sorten er genereret af en oprindelig algebra har samme væsentlige struktur som den vifte af Boolesk algebraer.He continued his work showing how Boolean algebra could be used to synthesise and simplify relay switching circuits.
Han fortsatte sit arbejde viser, hvordan Boolesk algebra kan bruges til at syntetisere og forenkle relæet skifter kredsløb.Shannon's spark of genius came in 1940 at MIT,when he noticed a relationship between Boolean algebra and telephone switching circuits.
Shannon's geniale ide kom i 1940 vedMIT[Massachusset Institute of Technology], da han bemærkede forholdet mellem Boolean algebra og telefoncentralbordene.In 1922:… he used Boolean algebra to characterise the topology of an abstract space independently of the notion of points.
I 1922:… han har brugt Boolesk algebra til at beskrive de topologi af en abstrakt rum uafhængigt af begrebet punkter.Apr 18 in Educational& Science Software, Math Software Windows read more Karnaugh Minimizer 2.0 updated Boolean algebra assistant.
Apr 18 I Uddannelsesmæssige og videnskab software, Matematik software Windows Læs mere Karnaugh Minimizer 2.0 Opdateret Boolean Algebra assistent program er et interaktivt program meget let at bruge.However through a natural interest in Boolean algebra and Boolean rings, he moved more towards an interest in algebraic structures.
Men gennem en naturlig interesse i Boolesk algebra og Boolesk ringe, han bevæget sig mere i retning af en interesse i algebraiske strukturer.Her inclination towards algebra was never completely forgotten andshe always seemed to draw results concerning Boolean algebras from her results about infinitary languages.
Hendes hældning i retning algebra blev aldrig helt glemt, oghun altid syntes at trække resultater vedrørende Boolesk algebraer fra hendes resultater om infinitary sprog.It began the algebra of logic called Boolean algebra which now finds application in computer construction, switching circuits etc.
Det begyndte den algebra logik kaldet Boolean algebra, som nu finder anvendelse i edb-anlæg, der skifter kredsløb mv Boole selv forstod vigtigheden af det arbejde.He was later(1958)to receive the Sylvester medal from the Royal Society:… in recognition of his distinguished contributions to combinatory topology, Boolean algebras and mathematical logic.
Han blev senere(1958)at modtage Sylvester medalje fra Royal Society:… i anerkendelse af hans fremtrædende bidrag til combinatory topologi, Boolean algebraer og matematisk logik.George Boole took Leibniz's binary code and created Boolean algebra, and John von Neumann took Boolean algebra and created the digital computer.
George Boole tog Leibniz' binære kode og skabte boolsk algebra,-- og John von Neumann tog boolsk algebra og skabte den digitale computer.Aleksandrov and Urysohn had made a conjecture in 1923 concerning necessary and sufficient conditions for a Hausdorff space to be compact andthis was not proved until 1935 when M H Stone gave an exceedingly complicated proof using representation theory of Boolean algebras.
Aleksandrov og Urysohn havde gjort en formodninger i 1923 om de nødvendige og tilstrækkelige betingelser for et Hausdorff plads tilat være kompakt og det var ikke bevist indtil 1935, når MH Stone gav en ekstremt kompliceret bevis vha. repræsentation teori om Boolesk algebraer.Foster went on to define the concept of a primal algebra generalising a Boolean algebra within the theory of varieties of universal algebras..
Foster fortsatte med at definere begrebet en oprindelig algebra generalisere en Boolesk algebra inden for teorien om sorter af forsyningspligten algebraer.It began the algebra of logic called Boolean algebra which now finds application in computer construction, switching circuits etc. Boole himself understood the importance of the work.
Det begyndte den algebra logik kaldet Boolean algebra, som nu finder anvendelse i edb-anlæg, der skifter kredsløb mv Boole selv forstod vigtigheden af det arbejde.Foster, as a student of Church, naturally began his research career working in mathematical logic.However through a natural interest in Boolean algebra and Boolean rings, he moved more towards an interest in algebraic structures.
Foster, som studerende i kirken, naturligvis begyndte sin forskerkarriere arbejder i matematisk logik. Mengennem en naturlig interesse i Boolesk algebra og Boolesk ringe, han bevæget sig mere i retning af en interesse i algebraiske strukturer.Then in 1934 he published two papers on Boolean algebras: Boolean algebras andtheir applications to topology and Subsumption of Boolean algebras under the theory of rings.
Så i 1934, han udgivet to papirer om Boolesk algebraer: boolean algebraer ogderes ansøgninger til topologi og subsumption af Boolesk algebraer under teorien om ringene.He continued devoting his efforts to the structure theory of algebras that are generalizations of Boolean algebras and, more than ten years down the line in 1966, he published Families of algebras with unique(sub-)direct factorization.
Han fortsatte med at afsætte sine bestræbelser på at strukturen teori om algebraer, der er generaliseringer af Boolesk algebraer, og mere end ti år siden i 1966, han offentliggjorde Familier af algebraer med entydige(sub) direkte Faktorisering.The construction of a set of structure invariants for certain classes of Boolean algebras, the characterisation of the lattice of congruence relations of a lattice, the imbedding of finite lattices in finite partition lattices, the word problem for free modular lattices, and a construction of a dimension theory for continuous, non-complemented, modular lattices, have an intrinsic interest independent of the problems associated with other algebraic systems.
Opførelse af et sæt af struktur invariants for visse klasser af Boolesk algebraer, karakterisering af gitter af kongruens forbindelser af et gitter, imbedding finite lattices i finite partition lattices, ordet problem for fri modulære lattices, og en opførelse af et dimension teori for kontinuerlig, ikke-suppleret, modulære lattices, har en iboende interesse uafhængig af de problemer, der er forbundet med andre algebraiske systemer.He continued devoting his efforts to the structure theory of algebras that are generalizations of Boolean algebras and, more than ten years down the line in 1966, he published Families of algebras with unique(sub-)direct factorization. Equational characterization of factorization in Mathematische Annalen.
Han fortsatte med at afsætte sine bestræbelser på at strukturen teori om algebraer, der er generaliseringer af Boolesk algebraer, og mere end ti år siden i 1966, han offentliggjorde Familier af algebraer med entydige(sub) direkte Faktorisering. Equational karakterisering af Faktorisering i Mathematische Annalen.
Resultater: 25,
Tid: 0.0389
Boolean algebra will allow you to simplify your circuits.
Boolean algebra is a method for manipulating logic expressions.
It doesn't dive into the boolean algebra too deeply.
The example of Boolean algebra simplification is explained below.
Find the Boolean algebra expression for the following system.
Thus, Boolean algebra is also the algebra of sets.
Some Ramsey Theory in Boolean Algebra for Complexity Classes.
cant understand boolean algebra for the life of me!
This Boolean algebra is the finite-cofinite algebra on X.
See Boolean algebra chapter for details on this example.
Vis mere
Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2.
Boolsk algebra er en fascinerende disciplin, og det er i virkeligheden den form for matematik, der altid ligger i de allernederste lag af en computer.
En boolean er en helt anden variabeltype: Navnet kommer fra Boolsk algebra, og de to oo'er i navnet skal udtales som et langt u.
Boolsk algebra er en special afart af matematik, der er specielt beregnet til at arbejde med kun to værdier - nul eller et - falsk eller sand.
Christen Mau
Boolsk algebra er, hvad vi har - også på linkedin
Há 4 anos, 2.641 visualizações
Gostar do SlideShare Boolsk algebra er, hvad vi har - også på linkedin.
Compartilhar o SlideShare Boolsk algebra er, hvad vi har - også på linkedin.
Mængden af transistorer må kunne reduceres med boolsk algebra, eller lignende.
Ethel Lillian Voynich-Boule, datter af den irske logik og matematiker George Boole (hørt om "Boolsk algebra"?), Skrev romanen "Gadfly".
Boolsk algebra SAND/FALSK 1/0 AND OR.
Salvar o SlideShare Boolsk algebra er, hvad vi har - også på linkedin.