What is the translation of " THIS CONJECTURE " in Danish?

[ðis kən'dʒektʃər]
[ðis kən'dʒektʃər]
denne formodninger
this conjecture
this assumption
this presumption
denne formodning
this conjecture
this assumption
this presumption

Examples of using This conjecture in English and their translations into Danish

{-}
  • Colloquial category close
  • Official category close
  • Medicine category close
  • Financial category close
  • Ecclesiastic category close
  • Official/political category close
  • Computer category close
Kronecker described this conjecture as.
Kroneckers beskrevet denne formodninger som.
But even in this conjectured situation we must assume the existence of the possibility of self-will.
Selv i denne formodede situation, må vi antage eksistensen af muligheden for egen vilje.
ARGUMENT has been presented to support this conjecture.
Argument er blevet fremlagt for at underbygge denne formodning.
Kronecker described this conjecture as:… the dearest dream of youth.
Kroneckers beskrevet denne formodninger som:… Kæreste drøm om unge.
A recent small study appeared to confirm this conjecture.
En nylig lille undersøgelse syntes at bekræfte denne formodning.
The standard form of this conjecture became known as the bag model of quark confinement.
Den standardformular af denne formodning blev kendt som posen model af kvark indespærring.
However, an exact estimation of ψ would allow someone to verify this conjecture.
Men, en nøjagtig vurdering af ψ ville tillade nogen at kontrollere denne gisning.
This conjecture proved to be a major factor in the proof of Fermat's Last Theorem by Wiles.
Dette formodninger vist sig at være en væsentlig faktor i beviset for Fermat's Last Theorem af intriger.
On his return to Tokyo in 1903 Takagi proved a conjecture on abelian extensions of imaginary number fields made by Kronecker.Kronecker described this conjecture as.
På hans tilbagevenden til Tokyo i 1903 Takagi vist en formodninger om abelian udvidelser af imaginær række områder fremsat af Kroneckers.Kroneckers beskrevet denne formodninger som.
This conjecture, similar to one stated by Euler one hundred years earlier, was proved by Chebyshev in 1850.
Denne formodninger, svarende til en angivet af Euler hundred år tidligere, blev vist ved Chebyshev i 1850.
Certainly he was completely familiar with the mathematics developed there, but what makes this conjecture much more certain, he knew personally the mathematicians working there and he sent his results to Alexandria with personal messages.
Ganske vist var han helt fortrolig med matematik udvikles der, men hvad gør denne formodninger meget mere sikker, han kendte personligt den matematikere arbejder der, og han sendte sine resultater til Alexandria med personlige meddelelser.
Thus, this conjecture of Artin was the origin of a wide range of activities in what is now called arithmetic geometry.
Således er denne formodninger af Artin var oprindelsen af en bred vifte af aktiviteter i det, der nu kaldes aritmetiske geometri.
I tried my utmost to find a counterexample to the conjecture which seemed all too perfect.finally I made my theory confirming this conjecture, but I could not rid myself of the doubt that it might contain an error which would invalidate the whole theory.
Jeg forsøgte mit yderste for at finde en counterexample til formodninger, som syntes alt for perfekt.Til sidst vil jeg holdt min teori bekræfter denne formodninger, men jeg kunne ikke frigøre mig for tvivl om, at det kan indeholde en fejl, som ville afkræfte hele teorien.
Confirms this conjecture and book beauty recipesthe famous Queen Cleopatra, where she gives pretty good advice for nail care.
Bekræfter denne formodning og book skønhed opskrifterden berømte dronning Kleopatra, hvor hun giver temmelig gode råd til neglepleje.
It is highly likely that, when he was a young man, Archimedes studied with the successors of Euclid in Alexandria.Certainly he was completely familiar with the mathematics developed there, but what makes this conjecture much more certain, he knew personally the mathematicians working there and he sent his results to Alexandria with personal messages.
Det er højst sandsynligt, da han var en ung mand, Arkimedes undersøgt med efterfølgerne for Euclid i Alexandria.Ganske vist var han helt fortrolig med matematik udvikles der, men hvad gør denne formodninger meget mere sikker, han kendte personligt den matematikere arbejder der, og han sendte sine resultater til Alexandria med personlige meddelelser.
An adjunct to this conjecture was the notion that the force between two quarks goes to zero as their separation distance goes to zero.
Et supplement til denne formodning var forestillingen om, at kraften mellem to kvarker går til nul som deres afstandskrav går til nul.
I woke up and tried to remember my reasoning but in vain. I tried my utmost to find a counterexample to the conjecture which seemed all too perfect.finally I made my theory confirming this conjecture, but I could not rid myself of the doubt that it might contain an error which would invalidate the whole theory. I badly lacked colleagues who could check my work.
Jeg vågnede og forsøgte at huske mit ræsonnement, men forgæves. Jeg forsøgte mit yderste for at finde en counterexample til formodninger, som syntes alt for perfekt.Til sidst vil jeg holdt min teori bekræfter denne formodninger, men jeg kunne ikke frigøre mig for tvivl om, at det kan indeholde en fejl, som ville afkræfte hele teorien. Jeg dårligt manglede kolleger, der kunne kontrollere mit arbejde.
This conjecture, posed in 1970, claimed that projective spaces are the only smooth complete algebraic varieties with ample tangent bundles.
Denne formodninger, udgjorde i 1970, hævdede, at Projektiv mellemrum er den eneste glat komplet algebraisk sorter med rigelig tangent bundles.
Finally I made my theory confirming this conjecture, but I could not rid myself of the doubt that it might contain an error which would invalidate the whole theory.
Til sidst vil jeg holdt min teori bekræfter denne formodninger, men jeg kunne ikke frigøre mig for tvivl om, at det kan indeholde en fejl, som ville afkræfte hele teorien.
If this conjecture were true(it has been shown to be false), then a general decision method would exist; namely, we systematically tile larger and larger square arrays of cells in every possible way with the given set of tiles.
Hvis dette formodninger var sandt(det har vist sig at være falsk), derefter en generel beslutning metode ville eksistere, nemlig at vi systematisk flise større og større kvadrat arrays af celler i alle mulige måde med den givne sæt af fliser.
All this conjecture, the ontological shock you speak of, for which we're so ill-equipped, is in my opinion not only false but dangerous.
Alt det her gætværk, det ontologiske chok, som du taler om, som vi ikke er forberedt på, er efter min mening ikke alene falsk, men også farligt.
Artin made this conjecture to Hasse on 27 September 1927(according to an entry in Hasse 's diary), and since then many mathematicians have tried to prove it.
Artin gjort denne formodninger til Hasse den 27 september 1927(i henhold til en post i Hasse's dagbog), og siden da har mange matematikere har forsøgt at bevise det.
This conjecture became known as"the main conjecture on cyclotomic fields" and it remained one of the most outstanding conjectures in algebraic number theory until it was solved by Mazur and Wiles in 1984 using modular curves.
Denne formodning blev kendt som"den vigtigste formodninger om cyclotomic felter", og det forblev en af de mest fremragende conjectures i algebraisk talteori, indtil det blev løst ved Mazur og intriger i 1984 ved hjælp af modulopbyggede kurver.
Artin made this conjecture to Hasse on 27 September 1927(according to an entry in Hasse 's diary), and since then many mathematicians have tried to prove it. Hooley has proved it under the condition that a strong form of Riemann 's hypothesis(for number fields) is valid.
Artin gjort denne formodninger til Hasse den 27 september 1927(i henhold til en post i Hasse's dagbog), og siden da har mange matematikere har forsøgt at bevise det. Hooley har vist det på den betingelse, at en stærk form af Riemann's hypotese(for flere felter) er gyldig.
The proof of this conjecture would mean that the generalization of the Gauss-Bonnet Theorem is that the integral of the Gaussian curvature over the smooth portions of a closed surface plus the sum of the angular deficits of the singular points is equal to 2π times the Euler characteristic of the surface.
Beviset for denne hypotese ville betyde, at forenklingen af Gauss-Bonnet Theorem er, at den integrerede af Gauss-krumning over de bløde dele af en lukket overflade plus summen af den kantede underskud i ental punkter svarer til 2π gange Euler karakteristik af overfladen.
Results: 25, Time: 0.0308

Word-for-word translation

Top dictionary queries

English - Danish