For example consider his theorem. Poincaré had stated his theorem in Sur un théorème de géométrie in 1912 but could only give a proof in certain special cases.
Poincarés havde erklæret sin sætning i Sur un théorème de géométrie i 1912, men kunne kun give et bevis i visse særlige tilfælde.He also wrote on non-euclidean geometry andCayley commented on one of his theorems saying.
Han skrev også om ikke-euklidisk geometri ogCayley kommenterede en af hans teoremer siger.Despite many brilliant results, some of his theorems on prime numbers were completely wrong.
Trods mange strålende resultater, nogle af hans teoremer om primtal var fuldstændig forkert.Emmy became interested in many similar topics to her father and generalised some of his theorems.
Emmy blev interesseret i mange lignende emner til hendes far og generaliserede nogle af hans teoremer.This was the spark which led Taylor to one of two versions of his theorem which he published three years later.
Dette var den gnist, der førte Taylor til en af to versioner af hans sætning, som han offentliggjorde tre år senere.His theorem, now called the Riesz- Fischer theorem, which he proved in 1907, is fundamental in the Fourier analysis of Hilbert space.
Hans teorem, som nu kaldes Riesz-Fischer sætning, som han viste i 1907, er grundlæggende i Fourier analyse af Hilbert rummet.His initial research was in topology and one of his theorems was the unknotting of spheres in five dimensions.
Hans første forskning var i topologi og en af hans teoremer var unknotting af kugler i fem dimensioner.It was a little while before Zermelo found the error in the proof andthen in 1905 Felix Bernstein published a short note correcting his theorem.
Det var et lille stykke tid før Zermelo fundet fejl i de beviser, ogderefter i 1905 Felix Bernstein offentliggjort et kort notat om berigtigelse af hans teorem.Unlike Euclid, Nicomachus gave no abstract proofs of his theorems, merely stating theorems and illustrating them with numerical examples.
I modsætning Euclid, Nicomachus gav ingen abstrakte beviser for hans teoremer, men blot nævnt,teoremer og illustrere dem med numeriske eksempler.Nine years later, in 1882, his daughter Emmy Noether was born.Emmy became interested in many similar topics to her father and generalised some of his theorems.
Ni år senere, i 1882, hans datter Emmy Noether blev født.Emmy blev interesseret i mange lignende emner til hendes far og generaliserede nogle af hans teoremer.Despite this Bézout, who was prepared to enter long and difficult algebraic manipulations,proved his theorem with just a little hand waving over an inductive argument.
Trods denne Bézout, der var parat til at træde lange og vanskelige algebraiske manipulationer,viste hans sætning med blot en lille hånd vinke over et induktivt argument.Borel formulated his theorem for countable coverings in 1895 and Schönflies and Lebesgue generalized it to any type of covering in 1900 and 1898(published 1904), respectively.
BOREL formuleret sit teorem for tælleligt belægninger i 1895 og Schönflies og Lebesgue generaliserede det til enhver form for dækning i 1900 og 1898(udgivet 1904), respectively.One would have to note, however,that the terminology of mathematics is not universal and in some countries his theorem is correctly named, or named after Cauchy, Bunyakovskii and Schwarz.
Man kunne have at bemærke dog, atterminologien i matematik er ikke universel og i nogle lande hans sætning er korrekt navngivet, eller opkaldt efter Cauchy, Bunyakovskii og Schwarz.Maschke proved a special case of his theorem in the paper Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen published in 1898.
Maschke vist et særtilfælde af hans sætning i papiret Über den arithmetischen karakter, der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen offentliggjort i 1898.MacCullagh was forced to admit, what was clearly the truth,that although conical refraction could be deduced from his theorems he had only made that deduction after Hamilton had announced the discovery.
MacCullagh blev tvunget til at indrømme, hvad der var klart sandheden, atselv om konisk refraktion kan udledes af hans teoremer han kun havde gjort, at fradrag efter Hamilton havde annonceret opdagelsen.In 1826 he generalised his theorem to a hyperboloid of revolution, rather than a cone, relating Pascal 's hexagon, Brianchon 's hexagon and the hexagon formed by the generators of the hyperboloid.
I 1826 han generaliserede hans sætning til en hyperboloid af revolution, snarere end en kegle, der vedrører Pascal's sekskant, Brianchon' s sekskant og sekskant dannes af generatorer af hyperboloid.Lies not merely in its effect on thefurther development of topology; of equal significance is the fact that his theorem enabled him to construct a general theory of characters for commutative topological group s.
Ligger ikke blot i sin virkning på den videre udvikling af topologi,af lige så stor betydning er den kendsgerning, at hans sætning aktiveret ham til at konstruere en generel teori om tegn for Kommutativ topologiske gruppe r.For example consider his theorem: In every right-triangle, if the double product of the legs be either added or subtracted from the square of the hypotenuse, both the sum and the remainder will be square numbers.
For eksempel overveje hans sætning: I hvert højre-trekant, hvis det dobbelte produkt af benene være enten tilføjes eller trækkes fra de med kvadratet på hypotenusen, både beløbet og resten vil være firkantede numre.This study began as an attempt to generalise results in Weierstrass 's lectures where he had described his theorem on the existence of an entire function with prescribed zeros each with a specified multiplicity.
Denne undersøgelse begyndte som et forsøg på at generalisere resultaterne i Weierstrass' s foredrag, hvor han havde beskrevet sit teorem om eksistensen af en hel funktion med foreskrevne nuller hver med en bestemt mangfoldigheden.Instead of using the existing reciprocity laws,Artin proved his theorems based on the new approach which then yielded a new reciprocity law which contained all previous reciprocity laws.
I stedet for at bruge de eksisterende gensidighed love,Artin vist hans teoremer baseret på den nye metode, som derefter givet en ny gensidighed lov, der indeholdt alle tidligere gensidighed love.In 1884 he published his next paper on finite groups in which he proved Sylow 's theorems for abstract groups Sylow had proved his theorem as a result about permutation groups in his original paper.
I 1884 han offentliggjorde sit kommende oplæg om finite grupper, hvor han viste Sylow's teoremer for abstrakte grupper Sylow havde vist hans sætning som et resultat om permutation grupper i hans oprindelige papir.This and related work was very much aimed at practical applications and his theorems on the distribution of the required number of observations, and on the probabilities associated with errors, found immediate applications.
Denne og relaterede arbejde var i høj grad tager sigte på praktiske anvendelser og hans teoremer om fordelingen af det krævede antal observationer, og om sandsynligheder forbundet med fejl og fundet umiddelbare applikationer.In his attempts to square the circle, Hippocrates was able to find the areas of lunes, certain crescent-shaped figures,using his theorem that the ratio of the areas of two circles is the same as the ratio of the squares of their radii.
I sit forsøg på at cirklens kvadratur, Hippokrates var i stand til at finde de områder af Mandag, visse halvmåne-formede figurer,der anvender sin sætning, at forholdet mellem de områder af to cirkler er det samme som forholdet af kvadraterne af deres radier.This idea was also used by Weierstrass and Pincherle.Borel formulated his theorem for countable coverings in 1895 and Schönflies and Lebesgue generalized it to any type of covering in 1900 and 1898(published 1904), respectively.
Denne idé blev også brugt af Weierstrass og Pincherle.BOREL formuleret sit teorem for tælleligt belægninger i 1895 og Schönflies og Lebesgue generaliserede det til enhver form for dækning i 1900 og 1898(udgivet 1904), respectively.The significance of this work of Pontryagin on duality( and):… lies not merely in its effect on thefurther development of topology; of equal significance is the fact that his theorem enabled him to construct a general theory of characters for commutative topological group s.
Betydningen af dette arbejde Pontryagin om dualitet(og):… ligger ikke blot i sin virkning på den videre udvikling af topologi,af lige så stor betydning er den kendsgerning, at hans sætning aktiveret ham til at konstruere en generel teori om tegn for Kommutativ topologiske gruppe r.He also wrote on non-euclidean geometry andCayley commented on one of his theorems saying:… from the boldness of the conception and beauty of the result a very remarkable one, and constitutes an important addition to theoretical dynamics.
Han skrev også om ikke-euklidisk geometri ogCayley kommenterede en af hans teoremer siger:… fra dristighed i planlægningen og skønhed resultatet en meget bemærkelsesværdig, og udgør et vigtigt supplement til den teoretiske dynamik.He had already achieved this distinction in most mathematicians eyes many years earlier when he proved Poincaré 's Last Geometric Theorem, a special case of the 3-body problem, in 1913.Poincaré had stated his theorem in Sur un théorème de géométrie in 1912 but could only give a proof in certain special cases. Birkhoff's proof in 1913 was.
Han havde allerede opnået en sådan sondring i de fleste matematikere øjne mange år tidligere, da han bevist Poincarés' s Seneste Geometrisk Teorem, et særtilfælde af 3-organ problem, i 1913.Poincarés havde erklæret sin sætning i Sur un théorème de géométrie i 1912, men kunne kun give et bevis i visse særlige tilfælde. Birkhoff's bevis i 1913 var.It was a little while before Zermelo found the error in the proof andthen in 1905 Felix Bernstein published a short note correcting his theorem. König retired from his post at the Technical University in 1905 but he continued to lecture there particularly on topics that he was interested in. Clearly retirement had been undertaken so that he could spend more time on things which he wanted to do- is this not the reason why many academics take early retirement?
Det var et lille stykke tid før Zermelo fundet fejl i de beviser, ogderefter i 1905 Felix Bernstein offentliggjort et kort notat om berigtigelse af hans teorem. König pensioneret fra sin stilling på Danmarks Tekniske Universitet i 1905, men han fortsatte med at belære der specielt om emner, at han var interesseret i. klart pensionering var blevet gennemført, således at han kunne tilbringe mere tid på ting, som han ønskede at gøre- er dette ikke den Grunden til, at mange akademikere gå på førtidspension?Like a number of other mathematicians,Ampère seemed able to concentrate on his theorems despite the personal tragedy around him and, sadly, this would be required of him throughout his unhappy life.
Ligesom en række andre matematikere,Ampère syntes stand til at koncentrere sig om hans teoremer trods den personlige tragedie omkring ham og, desværre, det ville blive krævet af ham hele hans ulykkelige liv.
Resultater: 30,
Tid: 0.048
But his theorem is correct, and restates longstanding understandings of quantum mechanics.
Sharkovsky (famous for his theorem on periods of cycles of interval maps).
Pythagoras is most famous for his theorem to do with right triangles.
Your download The Big Idea: Pythagoras & His Theorem displayed an Wearable freelance.
It was in higher teachings where his theorem is understood as the Monad.
It was Pythagoras who developed his theorem for the area of any triangle.
So Roger Myerson prove to his theorem was characterize optimal auction in 1981.
I’ve mostly heard his theorem mentioned in the context of scientists like J.
In his later writings, Coase expressed frustration that his theorem was often misunderstood.
Pythagoras and his theorem focuses on puzzles and play inspired by the seminal theorem.
Peter bliver stadig i dag mindet om hans sætning: “Spanien i dag, Belgien i morgen”.
Hans sætning “Only the paranoid survive” forsøgte Peter og resten af holdet at leve efter.
Efter hans sætning bagerst i dig (som stadig står der), kunne jeg ikke få ham ud af hovedet.
Dette er hans sætning:
For ti år siden troede vi ikke, at vores liv ville være sådan.
Hans sætning fra tidligere kommer frem i mit hoved. 'Jeg elsker hende, forhelvede'.
Hans sætning ramte mig dog også lidt, ”gamle dage … jeg savner dem, far,” sagde jeg stille og kiggede ned i jorden.
Kvinden må ikke tale hans sætning færdig.
5.
Jeg nikker kort til hans sætning og rækker ud efter en drink.
Sætningen giver igen udtryk for angrer, da der hverken er nogen undskyldning eller noget konkret indhold hans sætning.
Hans sætning, ”The business of business is profit”, er blevet repeteret mange gange, men sætningen holder ikke længere.