Приклади вживання Часткової кореляції Українська мовою та їх переклад на Англійською
{-}
-
Colloquial
-
Ecclesiastic
-
Computer
Нульовий порядок часткової кореляції ρхуØ визначається як звичайний коефіцієнт кореляції ρху.
Обидва порівняння варіантів двох змінних після того, як певні фактори, не контрольовані, але для обчислення напівчасткової кореляції, одна займає третю змінну константою для будь-якого Х або Y, але не обидва,в той час як для часткової кореляції, одна займає третю змінну константою для обох.
Нульовий порядок часткової кореляції ρXY·Ø визначається як звичайний коефіцієнт кореляції ρXY.
І приклад часткової кореляції обчислюється за звичайною формулою для вибіркової кореляції, але між цими новими отриманими значеннями.
Геометрична інтерпретація часткової кореляції для випадку n=3 зразків і, таким чином, 2-мірної гіперплощини.
При розрахунку напівчасткової кореляції Y і досі містить унікальну дисперсію і дисперсію з-за її асоціації з Z. Але rХ, будучи корельованним з Z, можуть пояснити тільки деякі з унікальної частини дисперсії у, а не частини,яка належить до Z. На відміну від цього, з частковою кореляцією, тільки ry(частина дисперсії у, яка не має відношення до Z) буде пояснена так, що там менше дисперсія типу rХ не можна пояснити.
Абсолютне значення напівчасткової кореляції Х з Y завжди менше абодорівнює часткової кореляції X з Y.
Щоб перевірити, що зразок часткової кореляції ρ^ Х Г ⋅ З{\властивості стиль відображення значення{\капелюх{\РО}}_{ху\cdot на\mathbf{Зв}}} зникає, використовують Z-перетворення в часткові кореляції Фішера.
За умови, що всі задіяні змінні це багатовимірні Гауссівського, часткової кореляції ρху·Z дорівнюють нулю, тоді і тільки тоді, коли х є умовно незалежноюY даного Z.[3] Ця властивість не використовується в загальному випадку.
Абсолютне значення напівчасткової кореляції Х з Y завжди менше абодорівнює часткової кореляції X з Y. Причина полягає в наступному: припустимо, що співвідношення X з Z видалено з Х, даючи залишковий вектор rХ.
Простий спосіб обчислити приклад часткової кореляції для деяких даних полягає у вирішені двох проблем пов'язаних з лінійною регресією, отримання залишків і обчисленням кореляції між залишками.
Простий спосіб обчислити приклад часткової кореляції для деяких даних полягає у вирішені двох проблем пов'язаних з лінійною регресією, отримання залишків і обчисленням кореляції між залишками. Нехай х і у, будуть, як зазначено вище, випадкові величини, що приймають дійсні значення, і нехай Z буде n-мірний вектор- випадкова величина.
Насправді, n-порядок часткової кореляції(тобто з|Z|= n) може бути легко обчислено з трьох(n- 1)- го порядку часткової кореляції.
Напівчасткова(часткова) кореляція статистики аналогічна частковій кореляції статистики.
Напівчасткова кореляція( часткова кореляції).
В теорії ймовірностей і статистиці, часткова кореляція вимірює ступінь зв'язку між двома випадковими величинами, з ефектом набору контрольних випадкових величин видалення.
Простий спосіб обчислити часткову кореляцію для деяких даних полягає у розв'язанні двох пов'язаних задач лінійної регресії, отримати залишки і обчислити кореляцію між ними.
Часткова кореляція першого порядку(тобто при N=1) являє собою різницю між кореляцією і добутком змінної кореляції, поділену на добуток коефіцієнтів відчуженими знімними кореляціями. .
Якщо бажана часткова кореляція тоді косинус кута φ між проекціями rX і rY х і y, відповідно, на гіперплощину, перпендикулярну Z.[2]: ch.
Формально, часткова кореляція між X і Y, задана множиною n керуючими змінними Z={Z1, Z2,…, Zn}, написана ρхуz, є кореляцією між залишками RХ і Ry у результаті лінійної регресії на Х із Z та Y з Z, відповідно.
Формально, часткова кореляція між X і Y, яка визначається множиною n керуючих змінних Z={Z1, Z2,…, Zn}, записується як ρXY·Z, є кореляцією між залишками eX та eY, як результат лінійної регресії на X із Z та Y з Z, відповідно.
Розподіл вибірки часткової кореляція було описано Фішером.[5].
Що z-перетворення є приблизними і, що фактичний розподіл вибірки(частковий) коефіцієнту кореляції є не однозначним.
Наскільки нам відомо, немає кореляції між колабораціонізмом а національністю- за частковим винятком, звичайно, Volksdeutsche[фольксдойчів].
Однак точний T-тест, заснований на поєднанні коефіцієнту часткової регресії,частковому коефіцієнті кореляції і частковій дисперсії є доступними.[4].
Напівчасткову(часткову) кореляцію можна розглядати як більш практично відповідною," так як вона масштабується(тобто відноситься) загальною мінливістю в залежності(відповіді) змінної.".[7] з іншого боку, вона менш теоретично відповідна, тому що вона менш чіткіше уявляє роль унікального внеску незалежної змінної.